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Rigid Quantum Secret Sharing Based on Cavity 

QED Through an Amplitude-Damping Noisy 

Channel 
S. Rfifi*,  A. Elkttaoui † , Y. Hassouni ‡ 

 

Abstract: A proposed model of quantum transmission of a secret message through an amplitude-damping noisy environment via Fock 

cavity field is achieved. The process is based on the contribution of a cavity QED, to have a rigidity against the eavesdropping attacks. 

Indeed, the interaction time, the strength coupling and the Fock field number also control the successful probability of the quantum secret 

sharing, which makes the interception messages more difficult during our proposed model. 
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1  INTRODUCTION                                                                     

uantum entanglement has been attracted much attention 
because of its power in quantum information processing 

as a special resource. In this context, many quantum tasks can 
be accomplished by quantum entangled states [1], such as 
quantum key distribution [2, 3], quantum teleportation [4], 
quantum secure direct communication [5, 6], quantum secret 
sharing [7-10], remote state preparation[11], and quantum 
state sharing (QSTS) [12] where a secret state is unknown to 
the sender and shared among a set of agents. We add that in 
the QSTS process only qualified agents groups can contribute 
to recover the state, which has a strong relationships with 
quantum teleportation and RSP. 
In the real world, during the entanglement applications, the 
entangled resources have been generated and transmitted by 
interaction with the outside environment. These interactions are 
considered as noises. In this context, many works have achieved 
the quantum communication through a noisy environment [13-
16].  In the presence of noises, during the QSTS schemes, the 
information is affected and it will be a lost of information. 
Therefore, the fidelity will depend so on the noise rate parame-
ter. Then, when this parameter becomes smaller, the fidelity 
keeps its higher value whatever the amplitude of the unknown 
state, but in the small noise rates case, the fidelity changes its 
value as a function of the amplitude of the unknown state [10] 
The present paper enhances a new QSS scheme [10], which is 
presented in an amplitude-damping noisy quantum channel, by 
exploiting the electrodynamics interaction based on cavity QED. 
This enhancement is analyzed by studying its robustness after 
adding the effect of a Fock cavity field in the secret recovery 
phase. The proposed schemes exploit the cavity QED to im-
prove the previous scheme [10] in order to avoid the possibility 
of any eavesdropping attack by adding an additional controller 
parameters in the QSS scheme as the interaction time, the 
strength coupling and the Fock field number. However, we 
keep a higher fidelity value by adjusting these parameters only 
in some periodic values. This period will be unknown for the 

eavesdropper and changes its value according to the amplitude-
damping noise, which makes any attack more difficult to be 
achieved successively. The current work achieves the same 
study purpose in the case of amplitude-damping noisy channels 
as it is done in [17] in the case of phase-damping noisy channels 
study. 

2 WITHOUT CAVITY QED USE, HOW WAS THE QSS SCHEME 

IN AN AMPLITUDE-DAMPING NOISY ENVIRONMENT? 

2.1 The amplitude damping noise 

The loss of energy from a quantum system causes an energy 
dissipation rate according to the kind of the noise action. In 
this context, the amplitude-damping noise is one of the most 
important decoherence noises, its action is described by a set 
of Kraus operators as [18] 
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Where, 0 ≤ λ ≤ 1 is the probability that a quantum state will be 
affected after passing through a noisy channel, and λ is called 
also the decoherence rate of the amplitude-damping noisy 
environment.  

Consider that Alice wants to distribute a secret state between 
two agents Bob and Charlie in such way that only if two 
agents work together they can recover the quantum state. The 
arbitrary single-qubit state to be shared has supposed in this 
form 
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0 1,a a are a real numbers known by Alice and 
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satisfying 2 2

0 1 1a a  , also 
0 1,  are supposed known by Alice 

satisfying this condition  0 1, 0,2   . 

The scheme of sharing an arbitrary unknown qubit state can 
be applied after two steps; the secret splitting phase and the 
secret recovery phase. 

 

2.2 The secret splitting phase in the scheme 

 

In this step, Alice prepares a GHZ state  
1

000 111
2

ABC ABC
    

As shared quantum resource. The density matrix of this state 
is expressed as 

(4)ABC    

Alice keeps the qubit A and sends qubits B and C to Bob and 
Charlie through two identical amplitude-damping noisy 
channels, (its effect is described by Eq.(1),(2)). This process will 
change the pure channel state into a mixed one. After qubits 
transmissions through the amplitude-damping noisy chan-
nels, the quantum resource which is used for state sharing 
becomes 
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Knowing that superscripts B and C present noise operators 
action on qubits B and C, respectively, and, † means the conju-
gate transpose. 
     Secondly, Alice prepares an ancilla state R in 0 and she 

performs an unitary operation U on particles AR. Then, the 
quantum system will be 

   †

1 0 0 (6)AR BC AR BCABC R
U U       

 
Where each subscript indicates a qubit, 

Thirdly, Alice measures qubit R in the computational basis. 
If she gets the result 0   by using as measurement operator 

0 0 0M   so the quantum system becomes as follows   
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Else, if Alice gets the result 1 , she needs to use the recursive 

way. 
 

    Next, Alice performs a projective measurement on the qubit 

A under the basis   ; 0,1k k   Consider that the meas-

urement result is k by using as measurement operator 

k k kM     with  0,1k , the quantum system will 

be rewritten as follows  
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Then, the quantum system of Bob and Charlie becomes 
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2.3 The secret recovery phase in the scheme 

 

Up to now, Bob and Charlies quantum system is 4 . Consider 

that Bob agrees to cooperate with Charlie in order to recover 

the secret state. Here, Bob performs a single-qubit measure-

ment under the basis 0 , 1 . 

Bob using the measurement operator 
1

1 1kBM k k  with 

 1 0,1k   applies its measurement. So, the state shared by 

Charlie will takes this form 
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     Finally, Bob sends his measurement result 1k to Charlie. 

Then, Charlie recover the secret state by performing 1k k

z 
on 

qubit C. The recovery state so has the form  
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2.4 The scheme fidelity 

 
The noisy environment will affect of course the initial state 
  to be as another mixed one described by out . For this 

reason, the fidelity is calculated to know the difference be-
tween both states as follows 
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It appears clearly in the figure 1 that in the case of an ampli-
tude-damping noisy environment, during the QSS the fidelity 
depends strongly on the amplitudes of the prepared state 

 and the noise rate λ. 

 

2.4 Discussion 

 
The fidelity value remains perfect and maximal (equal to 1), 

when the amplitude of the initial state  is found maximal 

( 0a =1 or 1a =1: no superposition in the initial atomic state is 

seen) whatever the noise rate λ. Also, in case when the noise 

rate λ is found maximal whatever the initial state  . 

It means that the QSS scheme through an amplitude-damping 
noisy channel without cavity QED use has a perfect successful 

probability only when the initial state   is non-superposed. 

In addition, an ideal quantum channel can gives a perfect suc-
cessful probability of the QSS scheme without carrying about 

the initial state  . 

The mean problem of such schemes appears in its weak securi-
ty, which comes from the standard behaviour of fidelity (fig-
ure 1). That's gives to the eavesdropper a prior idea on the 
way in which he will act to get the initial message according to 
the noise rate. In this context, the next section overtakes this 
problem based on Fock cavity field use. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

3 THE QSS SCHEME IN AN AMPLITUDE-DAMPING NOISY 

ENVIRONMENT USING CAVITY QED 

 
Many works have appended the cavity QED use to exploit the 
electrodynamics interaction in order to achieve and to enhance 
the quantum communication protocols [19]. In the following, 
we enhance the previous QSS scheme in the same amplitude-
damping noisy environment using a Fock cavity field. 

3.1 The proposed scheme 

 
Here, we keep all the process steps in the previous section 1 

until the time when Charlie performed the 1k k

z  operator on 

the Bob's measurement to recover the state in Eq. (11). But, we 
consider here that in the final step, Charlie sends its mixed 
state 

out to a cavity supposed experimentally of a non-leaky 

type [20-23]. 
The coupled atom-field system is described by the Jaynes-
Cummings Hamiltonian. Thus, the interaction Hamiltonian in 
a rotating frame at the cavity mode frequency and in the rotat-
ing wave approximation, at exact resonance, can be expressed 
as  

 † (12)g a a      
 

Where  †a a indicate the annihilation (creation) operators of 

the single-mode cavity field and    
denote the raising 

(lowing) operators of the atom, and (g) is the atom-field cou-
pling constant. By assuming that the cavity field is initially in 

the n-photons Fock state n and knowing that the atom hav-

ing the mixed state 
out pass through the cavity. The total sys-

tem will be initially found in the tensor product state 

 0out out n n    

 

 

Figure 1: The QSS fidelity in case of an amplitude-

damping noisy environment scheme without cavity 

QED use. 
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As defined in Eq. (11) 
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The dynamics of the atomic-field state after interaction with 
the cavity will be gotten by using the master equation 
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 is the evolution operator. After 

making the partial trace on the Fock field subspace, we get 
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Thus, in the end of this scheme, Charlie will get the state (20) 
instead of the state (11) comparing with the first scheme. Let's 
discuss then the fidelity behaviour she will get here to com-
pare it with the previous scheme fidelity. 
 

3.1 The scheme fidelity 

 

In this scheme, the initial state  will be affected by not only 

the noisy environment but also the effect of the Fock cavity 
field such as the interaction time and the coupling constant, to 

have as a consequence 2out then, the fidelity is calculated to 

know the difference between both states as follows 
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Knowing that we replace in the expression above 
1a by 2

01 a  

In the following, in figures (2, 3), we give the plots of the cur-

rent QSS scheme fidelity corresponding to two different val-
ues of the Fock field number.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Furthermore, in two dimensions, in order to study the two 
cases when the channel is ideal (λ=0) and when the channel is 

noisy (λ=1), we have plot the fidelity as a function of the product 

between the coupling constant and the interaction time (which is 

called the scaled time  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(Which is called the scaled time T=gt) The figures (4, 5) so 

show the fidelity behaviours for two diferent values of the 

Fock cavity field number. 

 

 

Figure 2: The QSS scheme fidelity in an amplitude-

damping noisy environment with cavity QED use, 

noting that three photons were initially in the Fock 

field. 

 

 

Figure 3: The QSS scheme fidelity in an amplitude-

damping noisy environment with cavity QED use, 

noting that ten photons were initially in the Fock 

field. 
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3.3 Discution 

Starting from the figure 6, when the initial state  is non-

superposed (
0 1a   or 

1 1a  ), whatever the value of the noise 

rate λ, the fidelity of the QSS scheme using cavity QED reaches 

its maximal value in a periodic values of the scaled time 

(T=gt). 

This periodicity becomes faster (more peaks are seen in the 

fidelity behaviour), when Charlie increases the Fock field 

number n inside the cavity. 

In addition, whatever the used channel kind (noisy or ideal), 

using a superposed initial state  , for different values of the 

 amplitude, the fidelity of the QSS scheme reaches its max-

imum value in some periodic values of the scaled time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(T=gt). Moreover, Charlie can enhance this maximum value of 
the fidelity by using a smaller noisy rate. We add that she can 
control also the frequency of successful recovering of the ini-
tial state by adjusting a suitable Fock cavity field n, the fidelity 
period becomes shorter in a higher used Fock cavity field n. 
 

3 CONCLUSION  

 
By inserting a cavity QED, especially a Fock cavity field, our 
QSS scheme becomes rigid against any eavesdropping attacks. 
Indeed, the eavesdropper who wants to intercept the message 
must have sequence values of the periodic scaled time where-
in the fidelity of the message transmission is maximal. This 
condition is difficult to be satisfied, because the third users 
(Charlie) control this sequence values by her choice of the 
used Fock cavity field number n. 
Then, the eavesdropper must have in addition the period of 
the scaled time to  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
know in which time he has to intercept the message (he has to 
apply his attack in the peaks of the figures bellow 2-6). That's 
the mean difficulty for the eavesdropper. Especially, he will 
find also another unknown parameters more than the cavity 
parameters, which complicates more the eavesdropping pro-
cess. 
The discussion of the scheme indicates that it can be realized 
by the current technology, which gives more efficiency to our 
work. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: The QSS fidelity in case of cavity QED use 

where 
0 1

4


     three photons are initially in the Fock field. 

 

Figure 5: The QSS fidelity in case of cavity QED use 

where 
0 1

4


     ten photons are initially in the Fock field. 

 

Figure 6: The QSS fidelity in case of a scheme includ-

ing an amplitude-damping noisy environment with 

cavity QED use, the initial state is non-superposed 

( 0 1a  and 1 0a  ). 
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